Exam III, MTH 221, Summer 2011

Ayman Badawi

QUESTION 1. (Each = 2 points, Total 48points + Extra 2points = 50 points) Circle the correct letter.

(i) One of the following is a linear transformation

a) $T: R^3 \to R^2, T(a_1, a_2, a_3) = (-a_2, 0, 1 + a_1)$ b) $T: R^3 \to R^2, T(a_1, a_2, a_3) = (a_1 + 2a_3, -5a_2)$ c) $T: R^3 \to R^2, T(a_1, a_2, a_3) = (-a_1, 2a_2 + a_3^2)$ d) None of the previous is correct

(ii) One of the following is a subspace of $R_{2\times 3}$:

a)
$$D = \{ \begin{bmatrix} a & -b & 2a+b \\ 0 & 3a & -4a+b \end{bmatrix} \mid a, b \in \mathbb{R} \}$$
 b) $D = \{ \begin{bmatrix} 0 & -b & 2a+b \\ 0 & 3a & -a+b \end{bmatrix} \mid a, b \geq 0 \}$
c) $D = \{ \begin{bmatrix} a & 3 & 2a+b \\ 0 & 3a & -4a+b \end{bmatrix} \mid a, b \in \mathbb{R} \}$ d) None of the previous is correct.

(iii) Let
$$D = \left\{ \begin{bmatrix} -a & b \\ 3a & -3b \end{bmatrix} | a, b \in R \right\}$$
 be a subspace of $R_{2 \times 2}$. Then a basis for D is :
a) $\left\{ \begin{bmatrix} -1 & 0 \\ 3 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & -3 \end{bmatrix} \right\}$ b) $\left\{ \begin{bmatrix} -1 & 1 \\ 3 & -3 \end{bmatrix} \right\}$
c) $\left\{ \begin{bmatrix} -1 & 0 \\ 3 & 0 \end{bmatrix} \right\}$ d) none of the previous is correct.

- (iv) Let $T : R^2 \to R$ be a linear transformation such that T(2,0) = 4 and T(-2,1) = 5. Then T(2,1) = a, $9 \quad b$, $13 \quad c$, $-1 \quad d$) can not be determined, more information is needed
- (v) Let T as in the previous question. One of the following points belongs to Ker(T):
 a) (-8,4)
 b) (8, -4)
 c) (-18, 4)
 d) none of the previous is correct
- (vi) Let $T : R^2 \to R^2, T(1,0) = (1,1)$ and $(0,3) \in Ker(T)$. Then Ker(T) =a) $\{(x_2, x_2) \mid x_2 \in R\}$ b) $\{(x_1, -3x_1) \mid x_1 \in R\}$ c) $\{(0, x_2) \mid x_2 \in R\}$ d) none of the previous is correct
- (vii) Let T as above. Then Range(T) =a) $span\{(1,1), (0,3)\}$ b) $span\{(1,1)\}$ c) $span\{(1,0), (0,3)\}$ d) None of the previous is correct (viii) Let $K = \{ \begin{bmatrix} 2a+b & 4a+2b \\ c & c \end{bmatrix} \mid a, b, c \in R \}$ be a subspace of $R_{2\times 2}$. Then dim(K) =
 - b)3 c)1 d) None of the previous is correct
 - (ix) Let $T : R^2 \to R^3$ be a linear transformation such that $T(a_1, a_2) = (0, a_1 + a_2, -2a_1 2a_2)$. Then $T(3, 0) = a_1(0, 3, -6)$ b) (0, 0, 0) c) (3, 3, 0) d)(0, 3, 0)
 - (x) Let T as above. The standard matrix representation of T is

a) 2

a)
$$\begin{bmatrix} 0 & 1 & -2 \\ 0 & 1 & -2 \end{bmatrix}$$
 b) $\begin{bmatrix} 0 & 0 \\ 1 & 1 \\ -2 & -2 \end{bmatrix}$ c) $\begin{bmatrix} 0 & 0 \\ 1 & -2 \\ 1 & -2 \end{bmatrix}$ d) $\begin{bmatrix} 1 & 1 \\ -2 & -2 \end{bmatrix}$

- (xi) Let T as above. Then Ker(T) =
 a) span{(0,1)}
 b) span{(1,0)}
 c) span{(-1,1)}
 d) none of the previous is correct
 (xii) Let T as above. Then Range(T) =
 - a) $span\{(1,1)\}$ b) $span\{(0,1,0)\}$ c) $span\{(0,1,-2)\}$

d) None of the previous is correct

(xiii) Let A be a 3 × 2 such that Rank(A) = 2. Then the system $AX = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ a) has exactly one solution, $x_1 = x_2 = 0$. b) has infinitely many solutions (xiv) All the below are linear transformation. Exactly one of them has no possibility of being ONTO:

a) $T: R^3 \to R^5$ b) $T: P_3 \to R$ c) $T: R^6 \to R^2$ d) $T: R_{2 \times 2} \to R^3$

- (xv) All the below are linear transformation. Exactly one of them has no possibility of being 1-1 (one to one): a) $T: R^3 \to R^4$ b) $T: P_3 \to R^2$ c) $T: R^6 \to R^9$ d) $T: R_{2\times 2} \to R^5$
- (xvi) Let A be an $n \times 4$ matrix such that rank(A) = 4. Then

a) n = 4 b) $n \ge 4$ c) n < 4 d) None of the previous is correct.

(xvii) Let $T: R^3 \to R^3$ be a linear transformation such that T is 1-1. Let M be the standard matrix representation of T. Then

a) $det(M) \neq 0$ b) T is ONOT c) (a) and (b) are correct d)none of the previous is correct

(xviii) Let $T : \mathbb{R}^5 \to \mathbb{R}^5$ be a linear transformation and let M be the standard matrix representation of T. Given M is invertible. Then

a) T is 1-1 b) Range(T) is a subspace of R^5 but not equal to R^5 . c) T is not ONTO d) (b) and (c) are correct

- (xix) Let $T: P_3 \to P_3$ such that T(p(x)) = p'(x). We know T is linear transformation. Range (T) = a) P^2 b) R c) P_3 d) none of the previous is correct
- (xx) Let T : R⁵ → R⁷ be a linear transformation and let M be the standard matrix representation of T. Given Rank(M) = 5. Then
 a) Ker(T) = {(0,0,0,0,0)} b) Range(T) = R⁷ c) Every 5 independent points in R⁷ form a basis for

a) $Ker(T) = \{(0, 0, 0, 0, 0)\}$ b) $Range(T) = R^7$ c) Every 5 independent points in R^7 form a basis for Range(T). d) none of the previous is correct

- (xxi) Let $T : P_2 \to R$ be a linear transformation such that T(1) = T(x) = 1. Then ker(T) = a) $span\{-1\}$ b) $span\{1-x\}$ c) $\{0\}$ d) None of the previous is correct
- (xxii) Let A be a 4×7 matrix. Then dim (N(A))

a) 4 b) \geq 3 c) is at most 3 d) None is correct

(xxiii) Let
$$T: P_3 \to R_{2\times 2}$$
 be a linear transformation such that $T(a_0 + a_1x + a_2x^2) = \begin{bmatrix} a_1 & a_1 \\ a_1 & 0 \end{bmatrix}$. Then Range(T) =
a) $span\{ \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix} \}$ b) $span\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \}$ c) $span\{ \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \}$ d) None is correct

(xxiv) Let T as above. Ker(T) =

a) R b) $span\{1, x^2\}$ c) P_2 d) None is correct

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

E-mail: abadawi@aus.edu, www.ayman-badawi.com