Exam III , MTH 221 , Summer 2011

Ayman Badawi

QUESTION 1. (Each = 2 points, Total 48points + Extra 2points = 50 points) Circle the correct letter.

(i) One of the following is a linear transformation
a) $T: R^{3} \rightarrow R^{2}, T\left(a_{1}, a_{2}, a_{3}\right)=\left(-a_{2}, 0,1+a_{1}\right)$
b) $T: R^{3} \rightarrow R^{2}, T\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}+2 a_{3},-5 a_{2}\right)$
c) $T: R^{3} \rightarrow R^{2}, T\left(a_{1}, a_{2}, a_{3}\right)=\left(-a_{1}, 2 a_{2}+a_{3}^{2}\right)$
d) None of the previous is correct
(ii) One of the following is a subspace of $R_{2 \times 3}$:
a) $D=\left\{\left.\left[\begin{array}{ccc}a & -b & 2 a+b \\ 0 & 3 a & -4 a+b\end{array}\right] \right\rvert\, a, b \in \mathrm{R}\right\}$
b) $D=\left\{\left.\left[\begin{array}{lll}0 & -b & 2 a+b \\ 0 & 3 a & -a+b\end{array}\right] \right\rvert\, a, b \geq 0\right\}$
c) $D=\left\{\left.\left[\begin{array}{ccc}a & 3 & 2 a+b \\ 0 & 3 a & -4 a+b\end{array}\right] \right\rvert\, a, b \in \mathrm{R}\right\}$
d) None of the previous is correct.
(iii) Let $D=\left\{\left.\left[\begin{array}{cc}-a & b \\ 3 a & -3 b\end{array}\right] \right\rvert\, a, b \in R\right\}$ be a subspace of $R_{2 \times 2}$. Then a basis for D is :
a) $\left\{\left[\begin{array}{cc}-1 & 0 \\ 3 & 0\end{array}\right],\left[\begin{array}{cc}0 & 1 \\ 0 & -3\end{array}\right]\right\} \quad$ b) $\left\{\left[\begin{array}{cc}-1 & 1 \\ 3 & -3\end{array}\right]\right\}$
c) $\left\{\left[\begin{array}{cc}-1 & 0 \\ 3 & 0\end{array}\right]\right\}$
d) none of the previous is correct.
(iv) Let $T: R^{2} \rightarrow R$ be a linear transformation such that $T(2,0)=4$ and $T(-2,1)=5$. Then $T(2,1)=$
a) 9
b) 13
c) -1
d) can not be determined, more information is needed
(v) Let T as in the previous question. One of the following points belongs to $\operatorname{Ker}(T)$:
a) $(-8,4)$
b) $(8,-4)$
c) $(-18,4)$
d) none of the previous is correct
(vi) Let $T: R^{2} \rightarrow R^{2}, T(1,0)=(1,1)$ and $(0,3) \in \operatorname{Ker}(T)$. Then $\operatorname{Ker}(T)=$
a) $\left\{\left(x_{2}, x_{2}\right) \mid x_{2} \in R\right\}$
b) $\left\{\left(x_{1},-3 x_{1}\right) \mid x_{1} \in R\right\}$
c) $\left\{\left(0, x_{2}\right) \mid x_{2} \in R\right\}$
d) none of the previous is correct
(vii) Let T as above. Then $\operatorname{Range}(T)=$
a) $\operatorname{span}\{(1,1),(0,3)\}$
b) $\operatorname{span}\{(1,1)\}$
c) $\operatorname{span}\{(1,0),(0,3)\}$
d) None of the previous is correct
(viii) Let $K=\left\{\left.\left[\begin{array}{cc}2 a+b & 4 a+2 b \\ c & c\end{array}\right] \right\rvert\, a, b, c \in R\right\}$ be a subspace of $R_{2 \times 2}$. Then $\operatorname{dim}(K)=$
a) 2
b) 3
c) 1
d) None of the previous is correct
(ix) Let $T: R^{2} \rightarrow R^{3}$ be a linear transformation such that $T\left(a_{1}, a_{2}\right)=\left(0, a_{1}+a_{2},-2 a_{1}-2 a_{2}\right)$. Then $T(3,0)=$
a) $(0,3,-6)$
b) $(0,0,0)$
c) $(3,3,0)$
d) $(0,3,0)$
(x) Let T as above. The standard matrix representation of T is
a) $\left[\begin{array}{lll}0 & 1 & -2 \\ 0 & 1 & -2\end{array}\right]$
b) $\left[\begin{array}{cc}0 & 0 \\ 1 & 1 \\ -2 & -2\end{array}\right]$
c) $\left[\begin{array}{cc}0 & 0 \\ 1 & -2 \\ 1 & -2\end{array}\right]$
d) $\left[\begin{array}{cc}1 & 1 \\ -2 & -2\end{array}\right]$
(xi) Let T as above. Then $\operatorname{Ker}(T)=$
a) $\operatorname{span}\{(0,1)\}$
b) $\operatorname{span}\{(1,0)\}$
c) $\operatorname{span}\{(-1,1)\}$
d) none of the previous is correct
(xii) Let T as above. Then $\operatorname{Range}(T)=$
a) $\operatorname{span}\{(1,1)\}$
b) $\operatorname{span}\{(0,1,0)\}$
c) $\operatorname{span}\{(0,1,-2)\}$
d) None of the previous is correct
(xiii) Let A be a 3×2 such that $\operatorname{Rank}(\mathrm{A})=2$. Then the system $A X=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
a) has exactly one solution, $x_{1}=x_{2}=0$.
b) has infinitely many solutions
(xiv) All the below are linear transformation. Exactly one of them has no possibility of being ONTO:
a) $T: R^{3} \rightarrow R^{5}$
b) $T: P_{3} \rightarrow R$
c) $T: R^{6} \rightarrow R^{2}$
d) $T: R_{2 \times 2} \rightarrow R^{3}$
(xv) All the below are linear transformation. Exactly one of them has no possibility of being 1-1 (one to one):
a) $T: R^{3} \rightarrow R^{4}$
b) $T: P_{3} \rightarrow R^{2}$
c) $T: R^{6} \rightarrow R^{9}$
d) $T: R_{2 \times 2} \rightarrow R^{5}$
(xvi) Let A be an $n \times 4$ matrix such that $\operatorname{rank}(\mathrm{A})=4$. Then
a) $n=4$
b) $n \geq 4$
c) $n<4$
d) None of the previous is correct.
(xvii) Let $T: R^{3} \rightarrow R^{3}$ be a linear transformation such that T is $1-1$. Let M be the standard matrix representation of T. Then
a) $\operatorname{det}(M) \neq 0$
b) T is ONOT
c) (a) and (b) are correct
d)none of the previous is correct
(xviii) Let $T: R^{5} \rightarrow R^{5}$ be a linear transformation and let M be the standard matrix representation of T. Given M is invertible. Then
a) T is $1-1$
b) Range(T) is a subspace of R^{5} but not equal to R^{5}.
c) T is not ONTO
d) (b) and (c) are correct
(xix) Let $T: P_{3} \rightarrow P_{3}$ such that $T(p(x))=p^{\prime}(x)$. We know T is linear transformation. Range $(\mathrm{T})=$
a) P^{2}
b) R
c) P_{3}
d) none of the previous is correct
(xx) Let $T: R^{5} \rightarrow R^{7}$ be a linear transformation and let M be the standard matrix representation of T. Given $\operatorname{Rank}(M)=5$. Then
a) $\operatorname{Ker}(T)=\{(0,0,0,0,0)\}$
b) Range $(T)=R^{7}$
c) Every 5 independent points in R^{7} form a basis for Range(T). d) none of the previous is correct
(xxi) Let $T: P_{2} \rightarrow R$ be a linear transformation such that $T(1)=T(x)=1$. Then $\operatorname{ker}(T)=$
a) $\operatorname{span}\{-1\}$
b) $\operatorname{span}\{1-x\}$ c) $\{0\}$
d) None of the previous is correct
(xxii) Let A be a 4×7 matrix. Then $\operatorname{dim}(N(A))$
a) 4
b) ≥ 3
c) is at most 3
d) None is correct
(xxiii) Let $T: P_{3} \rightarrow R_{2 \times 2}$ be a linear transformation such that $T\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=\left[\begin{array}{cc}a_{1} & a_{1} \\ a_{1} & 0\end{array}\right]$. Then Range($\left.\mathbf{T}\right)=$
a) $\operatorname{span}\left\{\left[\begin{array}{cc}0 & 1 \\ -1 & 1\end{array}\right]\right\}$
b) $\operatorname{span}\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\right\}$
c) $\operatorname{span}\left\{\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\right\}$
d) None is correct
(xxiv) Let T as above. $\operatorname{Ker}(T)=$
a) R
b) $\operatorname{span}\left\{1, x^{2}\right\}$
c) P_{2}
d) None is correct

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

